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Theoretical Derivation 

ENERGY 2020:  CONSUMER CHOICE THEORY 
This chapter provides a basis for using the multinomial logit in the consumer choice components 
of the ENERGY 2020 model.  This discussion will primarily rest on extensive quotations and the 
research of others.  Rather than reinvent the wheel, the developers of ENERGY 2020 took 
advantage of the well-supported research related to consumer choice as it applies to energy 
simulation. 

Consumer Choice Simulation 
The socioeconomic environment, of which energy is a component, is the consequence of people 
making choices.  They choose to build a house, store, or factory.  They decide to emphasize 
capital, operating, or energy efficiency in the process of providing goods and services.  They 
choose the fuel used to heat their homes; they choose the efficiency of the furnace and other 
energy using equipment; and they decide how to operate their furnaces and equipment.  The 
basic characteristic of consumers is that they make choices:  choices to acquire, specify, and use.  
Therefore, a proper representation of energy use must be a proper representation of how choices 
are made and the energy impact of those choices. 

Typically a choice can be portrayed as a selection among a spectrum of alternatives.  Faced with 
the selection options, a particular or discrete choice is made based on the preference of the 
consumer.  The mathematical characterization of this choice process is called discrete choice 
analysis.  The preferences are a function of observable quantities such as price and unobservable 
quantities such as style or taste.  Additionally, consumer uncertainty in both the observable and 
unobservable portions of the individual’s preference function means that the mathematical 
formulation of the choice process must be based on an estimation process, as are those 
estimations performed for more common econometric representations. 

Consumer Utility and the Multinomial Logit 

The utility, U, of a preference can be defined as Uin=Vin+εin where V is a dependent term and ε 
is an error term.  V may depend on any number of characteristics x of a choice i and has an 
arbitrary functional form.  “The generality and limits of this form deserve emphasis.  A variable 
[utility] may be a component of x, a function specifying a nonlinear transformation, or 
interacting components of x, or a function specifying an interaction between x [choice attributes] 
and s [decision-maker attributes] variables.”1 

Using these preferences, for a given situation n, the probability Pn of a consumer making a 
particular choice i can be determined with the use of a multinomial logit (MNL). 
                                                 
1McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior,” in Frontiers in 
Econometrics, Ed. P. Zarembka, New York, Academic Press, 1974, page 114. 
 



ENERGY 2020  Theoretical Derivation 
 

Systematic Solutions, Inc.  Policy Assessment Corp. 
 

2

“The multinomial logit is expressed as: 
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This model (or equivalent variants of it ) can be derived in a great number of ways.  Its original 
formulation is due to Luce (1959), a mathematical psychologist.  He derived the form of the 
[above] equation by making assumptions about the choice probabilities rather than the 
disturbances.”2 

The EPRI  REEPS model uses the MNL formulation.  The EPRI report starts the discussion as 
follows: 

“Our choice of functional forms for the choice probabilities has been guided by several 
considerations.  First, the functions must be computationally tractable, so that calibration and 
simulation on relatively large populations is possible.  Second, the forms must be sufficiently 
flexible to adapt to the patterns of substitution and complementarity found in the data, without 
restrictive a priori assumptions.  Third, households are assumed to be motivated to minimize the 
lifecycle cost of achieving specified levels of service, and more generally to weigh the 
desirability of energy-consuming services against other commodities in allocating their incomes.  
The functional forms for the choice probabilities should be consistent with such behavior.  A 
family of functional forms for choice probabilities which meet these criteria and are therefore 
selected for our analysis are termed nested logit models...  A nested logit model is a 
generalization of [the] form called the multinomial logit.”3 

MNL Characteristics 

If the utility Vi of a choice i greatly exceeds that of any other option, then the probability that the 
choice i, as shown in equation (1) will be actually chosen approaches unity.  If all the choices, as 
perceived by the consumer, have the same utility, then all the choices will have an equal 
probability of occurrence or 1/N where N is the total number of choice options available.  That 
is, if the utilities are the same, then consumers cannot tell the difference between the options and 
they are just as likely to pick any option.  Relative to a large population, this implies that equal 
proportions of each option will be selected.  If the choice were only between two options, then 
the probability would be 50/50 or ½ that either of the options would be chosen.  This phenomena 
is a natural and reasonable consequence of both equation (1) and consumer choice theory.  This 
does not mean a choice is not being made; it simply means that a consumer has no basis for a 

                                                 
2Ben-Akiva, M., Discrete Choice Analysis:  Theory and Applications, MIT Press, Cambridge, 
MA, 1985, page 103. 
 
3Cambridge Systematics, Inc., Residential End-Use Energy Planning Model System (REEPS), 
Electric Power Research Institute, Report EA-2512, Palo Alto, California, July 1982, pages 3-9. 
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particular choice if all the options have equal utility.  Note that in reality there is only an 
infinitesimal chance that all the options have the same utility. 

Equation (1) has the feature that it allows the full range of utilities.  If the utility function is a 
function of price, the price can range between 0 and infinity.  This use of infinitesimally small or 
large values is not a problem from an empirical perspective.  “Since empirically, a zero 
probability is indistinguishable from one that is extremely small, there is little loss of generality 
in assuming that the selection probabilities are all possible for the positive alternative sets in the 
experiment.”4 Moreover, more conventional econometric methods using elasticities have the 
identical theoretical considerations in that infinitesimally small prices would lead to infinite 
demands and infinitely large prices would lead to infinitesimally small demands and imply 
infinite energy efficiency. 

Independence From Irrelevant Alternatives 

“Three properties of logit probabilities [have been discussed], namely that they (1) range from 
zero to one, (2) sum to one over alternatives, and (3) are a sigmoid or S-shaped [cumulative 
distribution shaped] function of representative utility.  Each of these properties is quite 
reasonable, and in fact, the first two  are logically necessary.  Logit probabilities also exhibit a 
property, however, that, at least in some contexts, is not desirable.  This is called the 
independence from irrelevant alternatives property or the IIA property for short. 

“The IIA property has been the focus of considerable discussion in the literature and not a small 
amount of confusion.”5 

“Generally the attributes entering the [MNL] for a specific alternative j depend solely on features 
of this specific alternative, and not on features of other alternatives.  In this case the multinomial 
model is said to have the property of independence from irrelevant alternatives (IIA). 

The term ‘independence from irrelevant alternatives’ refers to the property that the relative odds 
of two alternatives are independent of the availability and attributes of  other alternatives. 

However, it is possible for Vj to depend on iterations between features of alternative j and other 
alternatives, in which case the MNL model does not have the IIA property.”6 

“Despite its practical advantages, the IIA property is a restriction that is not realistic in many 
situations.  Recent work has indicated, however, that the IIA property in logit models is not as 
restrictive as it might at first seem... 

                                                 
4McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior,” in Frontiers in 
Econometrics, Ed. P. Zarembka, New York, Academic Press, 1974, page 109. 
 
5Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986, page 18. 
 
6Cambridge Systematics, Inc., Residential End-Use Energy Planning Model System (REEPS), 
Electric Power Research Institute, Report EA-2512, Palo Alto, California, July 1982, pages 3-10. 
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McFadden shows that any model that specifies choice probabilities, including models that do not 
exhibit IIA, can be expressed in the form of a logit model [emphasis from original text].  That is, 
it is possible to express any choice probability [in the MNL form.] [The proof follows in the K. 
Train text.  See footnote seven]. 

This shows that the logit probabilities, with the appropriate specification [of parameters] equal 
the true probabilities.  Stated another way, any choice model can, with an appropriate choice [of 
estimated linear parameters], be put into the logit form.  This concept gives rise to the term 
‘mother logit’”7 

“What this discussion implies is that the logit specification can be used in situations for which 
IIA does not hold.  All that is required is that additional variables be added to the representative 
utility, in particular, variables that relate to alternatives other than the one for which the 
representative utility is designated.”8 

Train also says that these extra variables are constant terms simply added to the utility function 
for each choice alternative prior to estimation of V.  The modeler “estimates the model with all  
...  alternatives in the choice set and includes a constant term in the specification of the 
representative utility of the ... alternatives ...”9 

McFadden performed other tests to show that: 

“In particular, if the desirability of different alternatives tends to be fairly sharply differentiated 
for most households, which is the case unless the weights in [the MNL equation] are small in 
magnitude, the market cross elasticities are primarily determined by the distribution of 
households and are virtually independent of whether the household choice probabilities have the 
IIA property or not.  Furthermore, the MNL functional form is rather robust empirically in that it 
will often describe observed choice behavior adequately even when the forces underlying that 
behavior are theoretically inconsistent with the IIA property.”10 

In an earlier work, McFadden explains the concept further: 

“Nevertheless, empirical evidence is that the MNL model is relatively robust, as measured by 
goodness of fit or prediction accuracy, in many cases in which the IIA [independence of 
irrelevant alternatives] property is theoretically implausible. 

The restrictive IIA feature of the MNL model is present only when the vector xit for alternative i 
is independent of the attributes of alternatives other than i.  When this restriction is dropped, the 

                                                 
7Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986, page 21. 
 
8Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986, page 22. 
 
9Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986, page 23. 
 
10Cambridge Systematics, Inc., Residential End-Use Energy Planning Model System (REEPS), 
Electric Power Research Institute, Report EA-2512, Palo Alto, California, July 1982, pages 3-11. 
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MNL form is sufficiently flexible to approximate any continuous positive choice probability 
model on a compact [limited and defined] set of explanatory variables.  Specifically if P(i|xt) is 
continuous, then it can be approximated globally to any desired degree of accuracy by the 
[standard] MNL model ...”11 

Distributional Basis 

“If we assume that the Uin=Vin+εin for all i ... and that all the disturbances in (1) are 
independently distributed, (2) identically distributed, and (3) Gumbel-distributed with a location 
parameter ñ and a scale parameter μ > 0, then 
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Say ε is Gumbel-distributed.  Then [the cumulative form is:] 

F(ε) = exp(-exp-μ*(-ñ)) ... (3) 

As in the case of binary logit, the assumption of a constant ñ for all alternatives, or ñ=0, is not in 
any sense restrictive as long as each systematic utility has a constant term.  Similarly, the 
assumption that the disturbances are Gumbel-distributed can be defended as an approximation to 
the normal density.  It is also used only for reasons of analytical convenience.”12 

If ñ=0, then the distribution is called the Weibul distribution.  The Weibul distribution is more 
commonly cited than the Gumbel because it is the form actually used in practice. 

“Thus, the probability distribution function on the generic technology price can be derived from 
distributions on the specific technology costs.  It can be shown that the distribution of the least-
cost from a sample of independently-distributed costs approaches the Weibul distribution.”13 

“This model, or a derivative, has been used in a variety of energy modeling applications.”14 

                                                 
11McFadden, D., “Qualitative Response Models,” in Advances in Econometrics, Ed.. Werner 
Hildenbrand, Cambridge University Press, New York, 1982, p.10. 
 
12Ben-Akiva, M., Discrete Choice Analysis:  Theory and Applications, MIT Press, Cambridge, 
MA, 1985, p.104. 
 
13Boyd, D.W., et.al., Abbreviated R&D Program Portfolio Selection Workbook:  Market Share 
Model Appendix,  Decision Focus Incorporated, Palo Alto, California, U.S. Department of 
Energy contract DE-AC05-7BET05474, 1979, p. 6. 
 
14Boyd, D.W., et.al., Abbreviated R&D Program Portfolio Selection Workbook:  Market Share 
Model Appendix,  Decision Focus Incorporated, Palo Alto, California, U.S. Department of 
Energy contract DE-AC05-7BET05474, 1979, p. 11.  See, for instance, Cazalet, E.G., General 
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McFadden chooses the Weibul distribution a priori: 

“Suppose each member of a population of utility-maximizing consumers has a utility function ... 
[whose error terms are] distributed with the Weibul (Gnedenko, extreme value) distribution.”15 

Despite the support for the multinomial logit, alternative distributions have been studied to 
achieve a more theoretical avoidance of IIA problems.  First, McFadden’s experience: 

“If [the error term] is assumed to be multivariate normal, the resulting discrete response model is 
termed the multinomial probit (MNP) model ... when correlation is permitted between 
alternatives, so that the [covariance of the error terms] is not diagonal, the MNP model does not 
have the IIA or related restrictive properties ... However, for [more than five choice options], the 
computational time required for [estimation] ... is excessive.”16 

Next, Ben Akiva reviewed the topic: 

“Recent works [using the Probit] have resolved some of the computational problems.  However, 
only a few, very limited applications have appeared in [the] literature, and there is still no 
evidence to suggest in which situations the greater generality of multinomial probit is worth the 
additional computational problems resulting from its use.”17 

Ben-Akiva spent some time on the problem as noted in his earlier work: 

“The basic choice model that is used in this study for all alternative models is the multinomial 
logit model.  Other choice models that might be considered to be superior from a theoretical 
point of view, such as the multiple probit model, are more complicated.  It is not evident, 
however, that the added expense for more sophisticated choice models is worthwhile.”18 

                                                                                                                                                             
Equilibrium Modeling:  The Methodology of the SRI-Gulf Model, Final Report prepared by 
Decision Focus, Inc., for the Federal Energy Administration, Stanford Research Institute, Menlo 
Park, California, May 1977.  See also A. Masevice, A Review and Assessment of the Fossil1 
Supply Structures.  Thayer School of Engineering, Dartmouth College, Master of Science Thesis 
[Advisor - George Backus], September, 1978. 

 
 
15McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior,” in Frontiers in 
Econometrics, Ed. P. Zarembka, New York, Academic Press, 1974, page 111. 
 
16McFadden, D., “Qualitative Response Models,” in Advances in Econometrics, Ed.. Werner 
Hildenbrand, Cambridge University Press, New York, 1982, p.18. 
 
17Ben-Akiva, M., Discrete Choice Analysis:  Theory and Applications, MIT Press, Cambridge, 
MA, 1985, p.128. 
 
18Ben-Akiva, M., Structure of Passenger Travel Demand Models, MIT, Department of Civil 
Engineering, Ph.D. Thesis, June, 1973, p. 171. 
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Charles River Associates (CRA) also addressed the problem: 

“Three commonly used models, the probit and logit, and a third known as the Cauchy probability 
model, give ogives ... and are virtually indistinguishable except at probabilities close to zero or 
one, where the probit model approaches the limiting values most rapidly, the Cauchy model the 
least rapidly.  Within the range of most data, these models provide essentially equivalent 
probability functions and except for computational reasons, there is little to choose [statistically] 
among them.  The logit model has computational advantages since it is a closed (explicit) 
functional form.  The probit model, on the other hand, has an argument as the limit of an integral 
which  cannot be expressed in closed form.”19 

Although CRA brings up the Cauchy distribution in this entry it is never brought up anywhere 
else in their discussions.  One possible reason for the omission is McFadden’s concern for 
positive finite moments which the Cauchy distribution does not have.20 

Near the end of its review, CRA is down to only two approaches, the linear probability model 
and the conditional logit model (a form of MNL): 

“The two models for multiple choice developed above, the multiple choice linear probability 
model and the conditional logit model, prove to be the most useful for demand analysis ... These 
models provide the advantage of practical empirical implementability along with a satisfactory 
theoretical justification in terms of the underlying behavior of individual decision makers.21 

By the end of their review, however, CRA’s last alternative to the multinomial logit is rejected. 

“We conclude that the linear probability model as formulated ... does not yield a practical 
estimation procedure with satisfactory statistical properties.”22 

The references above claim to include all distributions that could be justified for use in choice 
analysis.  Other distributions have characteristics which violate the necessary requirements of 
consumer choice theory or provide currently untenable mathematical difficulties.  All competent 
research to date indicates that the multinomial logit, although it has limitations just like any other 
approach, provides the most acceptable means to simulate consumer choice. 
                                                 
19Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. 
Department of Transportation, Contract No. FH-11-756, Final Report, March, 1972, pages 5-11. 

 
20McFadden, D., “Conditional Logit Analysis of Qualitative Choice Behavior,” in Frontiers in 
Econometrics, Ed. P. Zarembka, New York, Academic Press, 1974, page 111, footnote 4. 
 
21Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. 
Department of Transportation, Contract No. FH-11-756, Final Report, March, 1972, pages 5-28. 

 
22Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. 
Department of Transportation, Contract No. FH-11-756, Final Report, March, 1972, pages 5-47. 
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Market Share MNL in ENERGY 2020  
Consumers, as simulated in ENERGY 2020, make choices relative to fuel selection for each 
energy end-use.  These choices are simulated in ENERGY 2020 using the multinomial logit.  
The use of detailed multinomial logit formulations in energy demand has already been noted in 
the reference to the EPRI REEPS residential energy model developed by D. McFadden.  It is 
also used in the EPRI COMMEND commercial model23 by incorporating the multinomial logit 
work of Cohen and Baughman as the market share simulation.24 The original Oak Ridge 
Residential Model developed by Eric Hirst also uses the multinomial logit for the market share 
calculation.25 

Utility Function Form 

The utility function is often written clearly, for example, as a simple function of price (Pi) with 
the constant (non-price) term noted above by Train. 26 

Vi = Ai + B*Pi (4) 

in ENERGY 2020, the log-linear form is used: 

Vi = ai + b*ln(Pi) (5) 

An implication of this form is that the consumers are more sensitive to the proportional (percent) 
differences in costs than in absolute ($) differences.  This means a one dollar difference is less 
important in a thousand dollar furnace decision than it is in a three dollar light-bulb decision. 

There is substantial support for this formulation.  The derivation of the market share function 
based purely on technological cost distributions leads directly to the form (with a=0 - no non-
price component) as shown in the work of Decision Focus, Inc. and the Institute for Economic 
Analysis.27 

                                                 
23Jackson, J.R., et. al., "Conservation Policy Analysis and End-Use Models: A Commercial 
Sector Example" in Proceedings: End-Use Models and Conservation Analysis, Electric Power 
Research Institute, Report EPRI EA 2509, Palo Alto, CA, July 1982, page 13. 
 
24Cohn, S., Fuel Choice and Aggregate Energy Demand in the Commercial Sector, Oak Ridge 
National Laboratory, ORNL/CON-27, December, 1978 and Baughman, M.L. and Joskow, P.L., 
“Energy Consumption and Fuel Choice by Residential and Commercial Consumers in the United 
States” in Energy Systems and Policy, Volume 1, No. 4, 1974. 
 
25Hirst, E., et. al., An Improved Engineering Model of Residential Energy Use, Oak Ridge National 
Laboratory, ORNL-CON-8, April 1977, page 18. 
 
26Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986. 
 
27Work of Decision Focus:  Boyd, D.W., et.al., Abbreviated R&D Program Portfolio Selection 
Workbook:  Market Share Model Appendix,  Decision Focus Incorporated, Palo Alto, California, 
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With this formulation, equation (1) becomes 
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where MSi replaces the probability usage in equation (1) to avoid confusion with the use of “P” 
for prices.  Also, 

mi = exp(ai) (7) 

This m term is called the market share multiplier in ENERGY 2020  but it is just the constant 
required to avoid IIA concerns.  When m is defined to be 1.0, as is common in technology 
assessment analysis, the equation becomes: 
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This simpler form is the most commonly used form of market share calculation as noted in the 
SRI/Gulf Model, the GEMS model, the DRI Energy Model and LMSTM along with the ORIM 
model noted above.28 It is also the method taught by EEI and EPRI for DSM analysis.29  
Nonetheless, note that the price (P) can be any complicated function (including the real price) 
necessary to specify the perceived value of the commodity or service. 

                                                                                                                                                             
U.S. Department of Energy contract DE-AC05-7BET05474, 1979; and for the Institute for 
Economic Analysis: Reister, D, et. al., "The Oak Ridge Industrial Model: An Introduction," in 
Proceedings: End-Use Models and Conservation Analysis, Electric Power Research Institute, 
Report EPRI EA 2509, Palo Alto, CA, July 1982, pages 6-14. 
 
28SRI/Gulf Model: Electric Power Research Institute, Fuel and Energy Price Forecasts, Volume 
2, Report   EPRI EA-433, Palo Alto, CA, 1977, p. 6-7: 
GEMS Model: Cazalet, E.G., General Equilibrium Modeling:  The Methodology of the SRI-Gulf Model, Final Report prepared by Decision 
Focus, Inc., for the Federal Energy Administration, Stanford Research Institute, Menlo Park, California, May 1977, p. 4-6; 

DRI Energy Model: Data Resources, Inc., DRI Energy Modeling System Documentation, Data 
Resources, Inc., Cambridge, MA, 1984, p.11; 
LMSTM: Decision Focus, Incorporated, User’s Guide to the Load Management Strategy 
Testing Model, Electric Power Research Institute, EPRI EA-3653-CCM, August 1984, p. C-2; 
ORIM Model: Reister, D, et. al., "The Oak Ridge Industrial Model: An Introduction," in 
Proceedings: End-Use Models and Conservation Analysis, Electric Power Research Institute, 
Report EPRI EA 2509, Palo Alto, CA, July 1982, p. 6-14. 
         
29Battelle Columbus Laboratory and Synergetic Resource Corporation, Demand-Side 
Management,  Edison Electric Institute and Electric Power Research Institute, EPRI EA/EM-
3597, Volume 2, December 1984, p. 32. 
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Basic research in choice analysis also tends to favor the log-linear approach: 

“The formulation employed by the McLynn and Woronk model (1969)  is equivalent to (the 
MNL) equation if all the variables Xitk are replaced by their logs ... This formulation can be 
written as:” 30 

P i A X
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“Specification of explicit probability functions for the ‘strict utility’ specification in the [MNL] 
equation can be completed by specifying parametric forms for the function V(x,s).  We shall 
consider several cases.  First suppose this function is log-linear in unknown parameters ...”31 

Parameter Specification 

The parameters (b) associated with choice variables are generally the same for all choice options, 
consistent with the derivation of the MNL-form above.  The usage stems from the concept that 
all choices have equal uncertainty relative to the consumer.32  The b parameters can be allowed to 
vary by alternative, however, provided the data truly supports the assertion that the choices are 
naturally indexed [unique onto themselves]. 33 When the microcomputer-based maximum-
likelihood procedure described below is fully functional, nonconventional analysis assuming 
varying b parameters can be performed. 

Thus the multinomial logit (based on the Weibul distribution) used in ENERGY 2020 is the only 
form supported in the literature (other than a theoretical effort to advance the potential use of the 
probit model - based on the normal distribution). 

                                                 
30Ben-Akiva, M., Structure of Passenger Travel Demand Models, MIT, Department of Civil 
Engineering, Ph.D. Thesis, June, 1973, p. 177. 
 
31Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. Department of Transportation, Contract No. FH-
11-756, Final Report, March, 1972, pages 5-26. 
 
32Train, K., Qualitative Choice Analysis, MIT Press, Cambridge, MA, 1986, pp. 37-40; Ben-Akiva, 
M., Discrete Choice Analysis:  Theory and Applications, MIT Press, Cambridge, MA, 1985, 
p.111; and McFadden, D., “Qualitative Response Models,” in Advances in Econometrics, Ed.. 
Werner Hildenbrand, Cambridge University Press, New York, 1982, p.4. 
 
33McFadden, D., “Qualitative Response Models,” in Advances in Econometrics, Ed.. Werner 
Hildenbrand, Cambridge University Press, New York, 1982, p.5. 
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Estimation of MNL Parameters 
The estimation of MNL parameters is abundantly discussed in the literature.  The functional 
form of the MNL equation causes the ordinary least square estimation process to be biased.  
Therefore the method of maximum likelihood estimation is used. 34 

“In many multiple choice applications using available data, regression methods are not 
applicable and the maximum-likelihood method is the only practical procedure available.”35 

ENERGY 2020 Estimation 

In ENERGY 2020, a non-price and a price related parameter are estimated for each fuel by end-
use and economic category.  These parameters were originally estimated in the DEMAND81 
model using national data and non-linear least-squares.  At the time, maximum-likelihood 
estimation packages were not commercially available.  However, as McFadden notes “an 
alternative to maximum-likelihood estimation is to use non-linear least squares ....”36 Nonlinear 
least-square estimation is a computer intensive operation.  Therefore, re-estimation of the price 
response portion of the function was not routinely performed.  It was assumed that the price 
response behavior would not be locally variable.  Local tastes and socioeconomic environment 
(the non-price) were however assumed to be local.  The non-price parameter was then re-
estimated by ordinary least-squares for each implementation of ENERGY 2020.  Studies show 
that “least-squares estimation leads to substantial overestimates of the price sensitivity...”37  
Therefore, this process should overestimate the conservation associated with market shifts and 
thus be less controversial from a regulatory perspective. 

Nonetheless, recent computer hardware advances now allow maximum-likelihood estimation to 
be performed routinely on microcomputers, the platform for ENERGY 2020.  Further, as 
ENERGY 2020 is used for analyses where there are limited historical data, maximum-likelihood 
estimation becomes more important because “limited Monte Carlo studies and analytical 
solutions suggest the maximum-likelihood estimators are also satisfactory in small samples.”38 
Limited testing of the components of a maximum-likelihood estimation routine for the ENERGY 
2020  calibration has been completed.  This routine will provide the statistical reporting unique 

                                                 
34Fomby, T., et.al., Advanced Econometric Methods, Springer Verlag, New York, 1984, Section 
16.4. 
 
35Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. Department of Transportation, Contract No. FH-
11-756, Final Report, March, 1972, pages 5-49. 
 
36McFadden, D., “Qualitative Response Models,” in Advances in Econometrics, Ed.. Werner 
Hildenbrand, Cambridge University Press, New York, 1982, p.7. 
 
37Dubin, J., and McFadden, D., “An Econometric Analysis of Residential Electric Appliance 
Holdings and Consumption,” in Proceedings:  End-Use Models and Conservation Analysis, 
EPRI Report EPRI EA 2509, Palo Alto, CA, July 1982, pages 13-20. 
 
38Charles River Associates, A Disaggregated Behavioral Model of Urban Travel Demand, U.S. Department of Transportation, Contract No. FH-
11-756, Final Report, March, 1972, pages 5-41. 
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to MNL estimation.  The ENERGY 2020 maximum-likelihood routine is based on the work of S. 
Cosslett which focuses on the use of aggregate data for efficient MNL estimation.39  This is the 
type of data most readily available to energy modelers. 

Data Sources 

Historical data, applicable to the service area, for the estimation of the MNL are obtained using 
published data from several sources corrected (scaled) to be self-consistent.  The energy use data 
by economic sector (residential, commercial, industrial) at the state level are available from the 
U.S. Department of Energy.40  These data are scaled to the service area based on historical utility 
sales by economic sector.  Industrial energy use is further disaggregated into SIC (Standard 
Industrial Category) designations by utility billing data or the Annual Survey of Manufacturers.41  
The Survey of Manufacturers also provides the SIC-specific proportions of fuel use (coal, oil, 
gas, electricity, cogeneration) for each historical year.  End-use information is often available 
from utility or other institutional surveys.42  The most appropriate data available are used. 

The utility sales are assumed to be the only values which are correct in an absolute sense.  All 
other data are only presumed correct in a relative sense.  That is, the data can be used for scaling 
(proportions) when the errors associated with that data can be assumed to cancel-out in the 
equation.  (It is generally assumed that the information in any survey data set has the same 
proportional error for each fuel, SIC, or end-use - all portions of the data are “equally” in error, 
e.g., 20% overestimated or 50% underestimated.) “Proportional data” is interpolated for missing 
data. 

By using data for historical demands, appliance efficiency and appliance life, additions and 
retirements to the appliance stock by fuel and end-use can be estimated to derive historical 

                                                 
39Cosslett, S.R., “Efficient Estimation of Discrete Choice Models”, in Structural Analysis of Discrete Data with Econometric Applications, ed. C. 
Manski and D. McFadden, MIT Press, Cambridge, MA, 1986, Chapter 2. 
40U.S. Department of Energy, State Energy Data Report, Energy Information Administration, 
DOE/EIA-0214, 1978 and later. 
 
41U.S. Department of Commerce, Annual Survey of Manufacturers, Washington, DC, 1987 and 
later. 
 
42See, for example, American Gas Association, Gas Facts, Arlington, VA., 1975 and later; U.S. 
Department of Commerce, Census of Housing, Washington, DC, 1970, 1980; U.S. Department 
of Energy, End Use Energy consumption Data Base:  Series I Table, Energy Information 
Administration, DOE/EIA-0014, June 1978:  U.S. Department of Energy, Residential Energy 
consumption Survey, Energy Information Administration, DOE/EIA-0207/5, July 1980 and later;  
U.S. Department of Energy, Nonresidential Buildings Energy Consumption Survey, Energy 
Information Administration, DOE/EIA-1278, June 1981 and later; and Electric Power Research 
Institute, EPRI EM-5126 Energy Use Patterns and Indicators,  Palo Alto, CA, April 1987. 
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market shares.43  These historical market shares are then used to estimate the MNL.  Price 
information comes from the utility, state, or the U.S. Department of Energy.44 

The focus here is to use the best data available categorized in the same manner as the utility uses 
the data for required regulatory matters.  This same data would be used in effectively the same 
way whether the formal model used were an end-use, econometric, or MNL-based model. 

Efficiency Trade-off as Binomial Logit 
The decision to invest in higher capital cost (higher energy efficiency) equipment or structures in 
the face of higher energy prices is a consumer choice.  It is a binomial logit choice in that it is the 
choice between two quantities, capital cost and operating costs (fuel).  The result of the choice 
determines the efficiency of the new equipment or structure.  The multinomial logit, equation 
(1), reduces to a much simpler form when only two choices are involved: 

Pn(i) = 1/(1+e(V1-V2)) (10.) 

or 

Pn(i) = 1/(1+e(V1)/e(V2))  (11) 

If V is log-linear, as used in ENERGY 2020 , the “form” becomes: 

Pn(i) = 1/(1+(V1/V2)) (12) 

Functional Form Selection 

A review of capital-efficiency trade-off literature shows only algebraic variations of the two 
forms above for determining capital cost versus efficiency.  (The function presented in the 
documentation can always be algebraically transformed to correspond exactly to a binomial 
logit.)  The logit has the necessary functional S-shape.  The curve must be asymptotic and reach 
the maximum (finite) efficiency at infinite costs.  The curves estimated here are empirical 
continuous curves reflecting consumer choice in light of actual technology alternatives. 

                                                 
43 for appliance efficiency see:  Association of Home Appliance Manufacturers, Energy Efficiency 
and Consumption Trends, Chicago, Illinois, July 1, 1984, and Geller, H., Energy and Economic 
Savings from National Appliance Efficiency Standards, American Council for an Energy-
Efficient Economy, Washington, D.C., August 1986.  For appliance efficiencies and appliance 
life see U.S. Department of Energy, Annual Report to Congress, Energy Information 
Administration, DOE/EIA-0173(198X)/3, 1981 and later. 
 
44See U.S. Department of Energy, State Energy Prices by Major Economic Sector, Energy 
Information Administration, DOE/EIA-0190, 1981 and U.S. Department of Energy, State Energy 
Price and Expenditure Report, Energy Information Administration, DOE/EIA-0376(8X), 1984 
and later. 
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Least-Cost Curves 

Least-cost curves which can also be used in demand analysis, including ENERGY 2020  
analyses, are discrete (discontinuous) engineering curves which order a selection of energy 
efficient technologies based on estimated (engineering-based) energy savings.  Least-cost curves 
are not used to determine the choice consumers make; they are used to determine the impacts of 
energy programs if consumers chose energy efficiency technologies based on the economic 
decisions used by the analyst.  The ordering of least-cost options on the least-cost curve is still 
an open issue, hotly debated.  Examples of least-cost generation are available from a variety of 
sources.45  These curves have the same general shape as the binomial logit and are well 
approximated by the logit.  The primary difference is that the “least-cost logit” is shifted toward 
the zero axis because it would have consumers investing in higher efficiency equipment at a 
much lower energy price.  That is, it would infer that consumers place much more utility on 
reducing long-term energy costs than the historical data indicate. 

Binomial Logit Basis 

The binomial logit curves can also be reconciled as a composite of the market share of all 
available technologies chosen by consumers as energy prices vary.  The resulting binomial logit 
can then be construed as a “fit” of the average efficiency selected by those “multinomial” 
choices. 

Those that use the log linear form of the binomial logit are ENERGY 2020  and the Oak Ridge 
Residential Model.46 The linear form is used in the REEPS and COMMEND model and several 
independent studies.47 

                                                 
45See, for example:  Meier, A. Supply Curves of Conserved Energy, Lawrence Berkeley Laboratory, 
May 1988;   
Krause, F., Analysis of Michigan’s Demand-Side Electricity Resources in the Residential Sector, 
Lawrence Berkeley Laboratory, LBL-23025, February, 1987; Ford, A. and Naill, R., Conservation 
Policy in the Pacific Northwest, Bonneville Power Administration, May 1985; and Synergetic 
Resource Corporation, Industrial Electricity Conservation Potential in the Pacific Northwest, 
Volumes I and II, report No. 7077-R2, Bala Cywyd, Pennsylvania, March 1983. 
 
46 For ENERGY 2020:  Backus, G., and J. Amlin, ENERGY 2020 Integrated Policy Model 
Documentation (three volumes), Policy Assessment Corporation, St. Paul, Minnesota, April 1987. 
For Oak Ridge:  Hirst, E., et. al., “The Oak Ridge National Laboratory’s Residential Energy Use 
Model:  Version 7.1” in  Proceedings:  End-Use Models and Conservation Analysis, Electric Power 
Research Institute, Report EPRI EA 2509, Palo Alto, CA, July, 1982. 
 
47See, for example:  Corum, K., et. al., “A Simulation Analysis of Alternative Policies to 
Simulate Energy conservation in Commercial Buildings,” in Proceedings:  End-Use Models and 
Conservation Analysis, Electric Power Research Institute, Report EPRI EA 2509, Palo Alto, CA, 
July 1982; O’Neal, D., and Corum, K., “Investment in Energy Efficient Houses:   An Estimate of 
Discount Rates Implicit in New Home Construction Practices,” in Energy, Volume 7, No. 4, 
Pergamon Press Ltd., 1982; Ruderman, H., et.al., “The Behavior of the Market for Energy 
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Binomial Logit Sensitivity 

Empirical tests using both forms under worst case conditions (at the center point where the 
probability is ½ and operating cost utility and capital cost utility are equal) show that a 25% 
change in capital cost (the independent variable) produces a 2% difference in the model results.  
A 50% change leads to a 10% difference.  During model usage, these curves are only affecting 
new investments, so their immediate impact on model results is reduced by an additional order of 
magnitude.  Note also, that the recently announced 25% improvement in efficiency standards for 
refrigeration is expected to produce only a 10% increase in capital costs.  The two forms, in this 
situation, would agree within 0.4%!  Thus the sensitivity to the form used in ENERGY 2020  and 
the only used alternative is indistinguishable. 

Estimation of Trade-off Curves 
The trade-off curves are only estimated once when the raw historical data on historical 
efficiency, capital cost, and fuel prices are entered into the ENERGY 2020 databases.  The 
binomial logit is a two parameter curve.  Therefore, the two (binomial choices) can be thought of 
as two equations (both a function of energy prices) with two unknowns.  These equations are 
solved by simple point estimates. 

Algebraic Solution 

Two features can be determined about the choice equation under particular conditions (the year 
1972 for ENERGY 2020 calculations.)  These are the actual choices of capital cost and 
efficiency (the first known) and the slope of the curve when the choice was made (the second 
known).  The functional form of the curve has been derived a priori.  The solution for the 
parameters is then simply to find two conditions for which the unknown parameters can be 
solved.  The capital cost and efficiency can be found in readily available historical data.  The 
slope of the curve in an infinitesimal region at the decision-point can be calculated by 
“perturbing” the solution of the cost function around a point.  This calculation provides the ε 
needed to solve the parameters of the globally-applicable binomial logit.  This slope calculation 
at one point has no other purpose and is unrelated, functionally, to the binomial logit used for all 
capital cost and efficiency calculations.  The ε  calculation is just part of a mathematical process 
to solve the parameters of the binomial (trade-off) logit. 

The trade-off curve is only estimated at the “1972 point” because that “point” was prior to any 
changes in energy prices.  The data for that year closely approximates an equilibrium market.  
This provides an easy basis for data interpretation in that marginal versus average issues need 
not be addressed.  (Alternatively, AHAM, AGA, ASHRAE, or other survey data could be used 

                                                                                                                                                             
Efficiency in Residential Appliances Including Heating and Cooling Equipment,” in The Energy 
Journal, Volume 8, No. 1, 1987.   
For REEPS and COMMEND see Cambridge Systematics, Inc., Residential End-Use Energy 
Planning Model System (REEPS), Electric Power Research Institute, Report EA-2512, Palo Alto, 
California, July 1982. 
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to perform a complete maximum-likelihood estimation of the trade-off curve, but any biases or 
incompleteness issues must be reconciled.) 

Estimation Confidence 

The use of a curve based on only 1972 data provides a significant test of function validity.  The 
curve is applied historically for the years 1975-1992 as well as for the future.  Independent, 
historical estimates of appliance efficiency can be compared to those produced by the curve in 
the historical simulation.  To date those comparisons have been favorable (conversations with J. 
Davulis, Central Maine Power Company; R. Terrell, Wisconsin Power and Light; M. Jurabchi, 
when with the Massachusetts Office of Energy Resources).  Formal comparisons have not yet 
been performed because definitive data on historical efficiencies are still lacking.  Additional 
years of self-consistent appliance efficiency surveys should resolve this problem. 

DEMAND TRADE-OFF CURVE DERIVATION 
This section derives the cost-versus-efficiency trade-off curves used in ENERGY 2020.  This 
derivation was originally developed for the U.S. Department of Energy’s DEMAND81 model.48  
This derivation also details how the demand coefficients in the model are estimated. 

The demand trade-off curve derivation begins with a generalized cost function: 

MCO = CCR*CC+OMC+P/N (1) 

Where  
MCO =  Marginal cost of output ($/Unit) 
CCR = Capital charge rate (($/Yr)/$) 
CC =  Marginal capital cost  ($/(Unit/Yr)) 
OMC =  Marginal operating and maintenance costs ($/Unit) 
P  =  Marginal price of energy ($/BTU) 
N  =   Marginal efficiency (Unit/BTU) 

For the general economy, output is measured in dollars of goods.  For an energy conversion 
process (here converting primary fuel BTUs to useful process BTUs), output is measured in 
BTUs of useful (process) energy.  For a transportation sector, output would be measured in 
equivalent vehicle-miles. 

This functional form is consistent with the classical definition: 

MCOj= ∑ai * (I/O)i    (2) 

Where 
ai  = cost per unit of input factor “I” 
(I/O)i  = units of input factor “I” to produce one unit of output “j” 

                                                 
48Backus, George A., DEMAND81:  National Energy Policy Model, School of Industrial 
Engineering, Purdue University, Reports AFC-7 through AFC-10, 1981. 
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For the purposes here, only capital and energy are explicitly considered.  The OMC term is an 
aggregate variable representing all other input factors such as labor and materials.  Capital costs 
(CC) are assumed to be a function of technological advance and energy costs only.  Operating 
and maintenance costs are assumed to be proportional to capital cost (and energy costs to the 
extent that capital costs are a function of energy costs.)  As machines become more complicated, 
higher cost labor and maintenance are required.  Empirical studies support this assumption.49 

OMC = OCF * CC (3) 

where OCF is the unit operation cost factor  ($/Yr)/$ 

Process efficiency is assumed to be a function of technological advance, capital costs, and 
energy costs.  At the margin, perceptions of the trade-off between cost and efficiency stipulate 
that: 

dMCO/dN = 0  (4) 

Where “d” is the ordinary differential operator.  (This analysis could proceed using partial 
derivatives; the results would be the same and the additional mathematical arguments would 
only detract from the clarity of the derivation.) 

Technological advance is exogenous but assumed to be changing over time.  Therefore, at any 
instant, capital cost can be written as a function of process efficiency for small perturbations of 
N as: 

CC*/CCB = (N*/NB)ε  (5) 

Where 
CC*, N*   =  perturbed values 
CCB, NB  =  base values before perturbation 
ε    =  elasticity and derivative of curve at “B” 

For algebraic ease: 

CCo  =  CC*/CCB (6) 

No    =   N*/NB (7) 

Po     =   P*/PB    (8) 

Using equations 3,5,7, and 8, equation (1) can be rewritten as: 

MCO = (CCR+OCF)*CCB * (No)ε + PB/NB * Po/No (9) 

                                                 
49See Backus, G., FOSSIL79: National Energy Policy Model, Resource Policy Center, Thayer 
School of Engineering, Dartmouth College, Report No. DSD-165 through DSD-168, 1979; and U.S. 
Department of Energy, FOSSIL2 Energy Policy Model Documentation.  NTIS Document 
DOE/70143-02, Washington, D.C., October, 1980. 
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Equation 9 can be used in equation 4: 

dMCO/dNo = (CCR+OCF) * CCB* ε * (No)ε-1 - PB/NB * Po/(No)2 = 0 (10) 

or in the base year when equations 6,7 and 8 equal unity: 

ε = [PB/NB]/[(CCR+OCF) * CCB] (11) 

This equation guarantees that the value added from energy or capital is equal at the margin as 
required by classical economics.  Note that ε is always positive. 

To increase the utility of equation 5, there needs to be a function “f” such that: 

CC*/CCN = f (N*/Nmax) (12) 

Where CCN is a normalizing capital cost varying only with technological advance and Nmax is 
the maximum obtainable efficiency currently available at any cost. 

Now the coordinate systems can be changed by multiplying equation 5 by CCN/CCN and Nmax / 
Nmax: 

CC*/CCN * CCN/CCB  =   (N*/Nmax * (Nmax /NB)ε (13) 

or 

CR = (β*NR)ε /α  | B (14) 

where: 
CR = CC*/CCN (15) 
NR = N*/Nmax (16) 

 α = CCN/CCB (17) 

 β  = Nmax /NB (18) 
 
Note that the slope of equation 14 in the base year (base values) is: 

dCR/dNR = ε*βε*NRε-1 / α |B (19) 

By definition it is assumed here that as: 

NR → 1 then CR → ∞ (20) 

(i.e. as N* → Nmax) 

As implied by a production function with substitution: 

CR → 0 as  NR → 0 (21) 
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This expression assumes that there can be no output without energy, which more strictly assumes 
that if: 

CR > 0  then  NR > 0 (22) 

It also assumes that capital is required for energy to be useful, i.e., if: 

CR = 0   then  NR = 0 (23) 

The market share function satisfies all these requirements: 

NR = 1/(1+CRμ) (24) 

Equation 24 is the market share function with only two choices - trading energy efficiency (fuel 
cost) for capital costs.  Here, the market share is the share of  the maximum efficiency.  Note that 
NR equals 0.5 when CR equals 1.0 (i.e., CC equals CCN) and that μ is always negative.  The 
appearance of the market share makes sense given that it reflects how choices are made with 
real-world, imperfect information/perceptions. 

Equation 11 can be solved using historical data.  For use in equation 1, equation 24 would be 
rearranged to yield: 

CR = (1/NR-1) 1/μ = Φh (25) 

Note that dCR/dNR must equal the value obtained from equation 19 in the base year.  From the 
chain rule: 

dCR/dNR = dCR/dΦ * dΦ/dNR (26) 

= -h*Φh-1 * NR-2 (27) 

= -1/μ * (1/NR-1)1/μ-1 *NR-2 (28) 

From equations 28 and 19: 

ε*βε * NRε-1 / α = -1/μ * (1/NR-1)1/μ-1 * NR-2 (29) 

In the base year (from equations 17 and 18): 

ε*NR-ε *NRε-1 *CCB/CCN = -1/μ * (1/NR-1)1/μ-1 *NR-2 (30) 

or by noting that (1/NR-1) equals (1-NR)/NR: 

-ε*μ * CCB/CCN = (1-NR) 1/μ-1 * NR-1/μ (31)  

In equation 31, ε, CCB, and NR can be obtained directly form historical data and engineering 
estimates (i.e., Nmax).  CCN and μ are the only unknowns in equation 31.  Equation 25 also 
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defines CCN and μ.  Equation 25 can be used to generate an equation with μ as the only 
unknown.  Equation 31 becomes: 

-ε*μ * (1/NR-1)1/μ = (1-NR)1/μ-1 * NR-1/μ (32) 

or 

μ = -1/[ε*(1-NR)] (33) 

With μ known, CCN can be found by equation 25: 

CCN =CCB/(1/NR-1)1/μ (34) 

Now equation 1 can be rewritten by using equation 25: 

MCO = (CCR+OCF)*CCN*(1/NR-1)1/μ + PN/Nmax * PR/NR (35) 

where PN is a normalizing energy price and: 

PR = P*/PN (36) 

On the margin, equation 4 must be valid at all points; therefore: 

dMCO/dNR =Ω*h * (1/NR-1)h-1 *NR-2 - θ*PR/NR2 = 0 (37) 

where: 
Ω =  (CCR+OCF)*CCN (38) 
θ  =  PN/Nmax (39) 
h  =  1/μ  (40) 

 
or 

θ*PR = -Ω*h * (1/NR-1)h-1 (41) 

or 

NR = 1/[1+(-θ*PR/(Ω*h))1/h-1] (42) 

Note that from equations 38, 39 and 40, -θ*PR/(Ω*h) equals: 

(-μ/Nmax) / [(CCR+OCF)*CCN] * P* (43) 

Thus PN can be redefined as: 

PN = (CCR+OCF)*CCN / (-μ/Nmax) (44) 

and 
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σ = μ/(1-μ) (45) 

Finally, equation 42 becomes: 

NR = 1/(1+PRσ) (46) 

Note that the CR and PR equations are functionally consistent as they must be. 

In ENERGY 2020, σ is the fuel trade-off coefficient XXFTC  (where XX is the end-use or 
process prefix), μ is the capital trade-off coefficient XXCTC, PN is the fuel price - normal 
XXFPN and CCN is the capital cost normal XXCCN.  Nmax are the XXEMs in ENERGY 2020 
for each end-use or process. 

XXFTC, XXCTC, XXFPN, and XXCCN are solved with 1972 historical data.  In 1972 the 
average (recorded) data also approximate the marginal decision data because energy prices had 
been constant since 1940.  This is long enough for the vintaging effects of capital stocks to be 
minimal. 

DERIVATION OF THE CAPITAL CHARGE RATE 
The capital charge rate is the annualization of capital  expenses to account for taxes, tax credits, 
return of principal,  return on investment, and interest during construction.  The  "CCR" equation 
is: 

CCR = (1+R)**(C/3)*(1-ITC/(1+NR)-TR*(TL/2)/(TL/2+NR)) 
*R/(1-(1+R)**(-BL))/(1-TR) 

Where: 
R  = Real Return on Investment 
NR = Nominal Return on Investment 
C  = Construction Time 
ITC= Investment Tax Credit 
TR = Tax Rate (Federal plus State income tax) 
TL = Tax Life 
BL = Book Life 

   
NR=(1-TR)*(1-F)*ND+F*NE 
R=(1+NR)/(1+INF)-1 
ND=(1+D)*(1+INF)-1 
NE=(1+E)*(1+INF)-1 

 

Where: 
F  = Fraction Equity 
INF= Inflation Rate 
ND = Nominal Return on Debt (Interest Rate) 
D  = Real Interest Rate 
NE = Nominal Return on Equity 
E  = Real Return on Equity 
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For small "INF" (less than 10%/yr), a simpler calculation can be  used with acceptable error: 
ND=D+INF 
NE=E+INF 
R=(1-TR)*(1-F)*D+F*E 
NR=R+INF 

   

Risk can be added to "R" to reflect uncertainty and a higher  required return.  Energy 2020 
includes financial risk concerns by  increasing the required rate of return.  Typically, a .02 to .05  
risk (RISKN) is used for new technologies.50   

Although the standard version of ENERGY 2020 uses a constant risk  adjustment, a dynamic 
risk adjustment can be easily calculated.   As a first approximation, a technology is assumed to 
be mature  when the demand (D) for it is 10% of the total market demand  (MPD).  The risk can 
be reduced over time to reflect this  phenomenon: 

RISK=RISKN*EXP(-D/MPD) 
RR=R+RISK 

 

where "RR" is the risk-adjusted "R" that can be used instead of  "R" in all appropriate equations. 

The "(1+R)**(C/3)" term in the "CCR" equation represents interest  during construction which 
must be added to the final cost of the  facility.  During construction, costs accumulate faster near 
the  end of the project than at the beginning.  As a good  approximation, it can be assumed that 
all the construction costs  occurred two-thirds of the way through the construction program.   
That means interest charges ® accumulated for a time equaling  "C/3". 

The "R/(1-(1+R)**(-BL)" term is the classical capital recovery  term.51   The "(1-TR)" term at the 
end converts the after tax calculation  into before tax dollars.  

Investment tax credits reduce the cost of the plant by the tax  credit after the first year of 
operation using "original"  dollars.  Therefore the value of the tax credit is "ITC/(1+NR)".  

Depreciation is expensed for tax purposes during each year of the  tax life of the plant.  With the 
double-declining balance method  (DDB) of computing depreciation, the depreciation (DEP) of 
the  plant for each capital dollar spent in year "t" is: 

DEP(t)=2/TL*(1-2/TL)**(t-1) 

Depreciation, under existing laws, is a current dollar phenomena  which does not account for 
inflation.  Therefore the net present  value of the energy is calculated with the nominal rate of  
return.  If the depreciation life is adequately long to neglect  end year effects, then the net present 
value of depreciation  expenses is: 

(2/TL)/(NR+2/TL) 

                                                 
50Backus, G. A.,  FOSSIL79 National Energy Policy Model, Resource Policy Center,  Thayer School of Engineering, Dartmouth College, Report 
No.  DSD-165 through DSD-168, 1979. 
51Smith, Gerald W., Engineering Economy: Analysis of  Capital Expenditures, Iowa University Press, Ames, Iowa 1973. 
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Because depreciation is a benefit (negative cost) based on the  total plant before investment tax 
credits, it shows up as an  additional negative term in the capital cost modifiers of "CCR:" 

(1-ITC/(1+NR)-TR*(TL/2)/(TL/2+NR)) 

The CCR calculation is naturally appropriate to business decisions  but its use in the residential 
sector may appear artificial.   When the CCR calculation is used for the residential sector, TL  
and C are set to zero because the residential sector can neither  write off depreciation expenses 
nor make adjustments for extended  construction times.  This makes the calculation exactly 
correct  for housing and any long-term investments.   

Concerns can occur when the life of the loan is much shorter than  the physical life assumed in 
the CCR calculation.  When  short-term loans (2-5 years) are used, the home owner still  
implicitly discounts the equity portion of equipment and  depreciates the equipment over its 
expected life time.   (Consumers do not expect a car or stove to fail as soon as the loan is paid-
off; they write-off its value over its actual life  time.)  Therefore, the CCR calculation can only 
be incorrect for  the debt portion of the investment.  When a life cycle cost analysis of the actual 
cash flows is performed, which levelizes the short-term interest payments with the life of the  
equipment, the results are essentially identical to those  obtained with the CCR calculation here. 

 
 

PROMULA—HOST LANGUAGE OF ENERGY 2020 
The ENERGY 2020 model is a large and complex mainframe-size model.  Through the use of 
the PROMULA computer simulation language, ENERGY 2020 is now available for the IBM PC 
and IBM compatibles.  PROMULA is a product of Mindware Corporation, Columbus, Ohio.  
The name PROMULA comes from: PROcessor of MUltiple Language Applications. The 
following briefly describes the language: 

PROMULA is a high-productivity applications development tool.  It is an integrated multi-
language compiler which, in the standard version, can process programs written in any of the 
following four languages: FORTRAN, PASCAL, BASIC, PROMULA. 

PROMULA, which is specifically designed to increase programming productivity, is a tool for 
problem solving.  Its ability  to process and integrate programs written in a variety of languages 
sets it apart from all other application development tools. As an applications and information 
management system, PROMULA manages both applications and the information associated with 
applications.  It is especially useful for implementing serious, mainframe-size applications on a 
personal computer.  PROMULA applications will run either as stand-alone programs or as 
integrated systems consisting of many multi-language components.  

PROMULA, the language, is a decision support system; it lets the user focus information onto a 
problem, thus allowing him/her to analyze and evaluate alternative decisions about the problem.  
It integrates the following basic capabilities: 

1. Data management (organize and selectively manipulate data) 
2. Data analysis (establish relationships in the data) 
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3. Modeling (simulate a problem and possible solutions to it) 
4. "What if" analysis (compare alternative decisions about the problem) 
5. Report generation (display data or results in report form) 
6. Graphics (display data or results in plotted form) 
7. Menu management (prepare and use pick and data menus) 
8. Equation solving (solve systems of simultaneous equations) 
 

PROMULA bridges the transition from third- to fourth-generation programming capability in 
applications development.  FORTRAN, PASCAL, and BASIC are third-generation procedural 
languages used extensively by both systems and application programmers. PROMULA, on the 
other hand, is a fourth-generation language designed specifically for programming applications.  

PROMULA is also a valid programming alternative to spread sheets or database managers 
(DBMS) in large-scale applications development. It  is easier to write PROMULA programs than 
it is to write unreadable spread sheet macros or constrained DBMS command sequences. In the 
PROMULA environment, learning a new language, like PROMULA, is an option, not a 
requirement. The user can continue to write programs in FORTRAN, PASCAL, or BASIC. 

PROMULA System Highlights 
A. Total Programming Environment: Complete turnkey applications can be written with 

PROMULA. The system is designed to capitalize on existing applications written in a 
variety of languages and to minimize programming time in developing new 
applications.  PROMULA is largely self-contained with its own screen editor, 
compilers, and operating system interface.  
All languages supported by PROMULA are fully featured.  No tricks are required to 
do the detailed types of operations needed by all kinds of applications.  

B. Program Editor: A screen editor allows the writing and editing of source code and 
data files. 

C. Transportability: PROMULA is designed to be transportable among various 
machines and operating systems.  It is written in standard, transportable C.  A 
standard FORTRAN version is also available for traditional mainframe environments.  

D. Compatibility:  PROMULA is not an operating system; rather, it operates within the 
standard PC-DOS environment and is completely compatible with other software. 

E. Extendibility: PROMULA can be easily extended to include additional compilers or 
different language dialects. 

F. Language Integration:  PROMULA is an integrated program development 
environment.  The whole of PROMULA is more valuable and more powerful than the 
sum of its parts.  The PROMULA languages work with and enhance one another.   

  
G. While each language has its own separate compiler, the execution of all languages is 

processed via a single, central program.  All PROMULA languages share a large, 
built-in function library for performing such operations as database management, 
screen and menu management, and graphics.  The library functions are available to 
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PROMULA via single commands to FORTRAN and PASCAL via procedure calls, 
and to BASIC via special statements. 

H. Program Integration: A PROMULA program can consist of segments written in 
different languages or even segments compiled by compilers other than PROMULA.  

I. Value Added:  PROMULA adds value to existing FORTRAN, PASCAL, or BASIC 
codes.  By themselves, such codes are strictly computational or procedural "boxes."  
PROMULA allows complete use of the information contained in the boxes, thus 
adding value to the codes. 

J. Mainframe PROMULA:  A mainframe version of PROMULA allows PROMULA to 
be used as a distributed decision support system, trading off the power of the 
mainframe against the ease-of-use and convenience of the personal computer. 

PROMULA Language Highlights 
A. Notation:  PROMULA is a structured language especially useful for developing 

applications quickly.  Its elegant notation, structured concepts, and built-in functions 
minimize the time it takes to develop serious, mainframe-size applications on a desk top 
computer. The self-documentation notation of PROMULA enhances the readability of 
programs. 

B. Language Tutorial:  This reference aid is an on-line, menu-driven tutorial that allows the 
user to obtain information about PROMULA while programming or using an application. 

C. Language Primer:  This learning aid is a series of commented source programs designed 
to demonstrate the PROMULA language constructs (nouns) and the PROMULA 
commands (verbs). 

D. Tutorial Writer:  A tutorial writer allows the creation of menu-driven, application-
specific tutorials by simply typing them in.  It converts whole books or reports into on-
line, menu-driven tutorials. 

E. Menu Manager:  PROMULA's menu manager prepares pick and data menus for "user 
friendly" applications.  Menu preparation is as easy as typing the menus on the screen.  

F. Data Editor:  A screen editor allows data entry and update. Using techniques similar to 
those found in spread sheet programs, PROMULA can browse through the "pages" of 
multidimensional arrays to view or change their values. 

G. Report Generator:  A general-purpose report generator displays information in flexible 
tabular or report formats.  

H. Graphics:  PROMULA supports business graphics (point plots, x-y plots, bar plots, etc.) 
for both monochrome and color display monitors. 

I. Command Mode:  In command or direct mode, PROMULA accepts a statement, converts 
it to executable instructions, and proceeds to the next statement. 

J. Compilation Mode:  In indirect or compilation mode, PROMULA compiles a group of 
statements as a procedure or a program that can be run later. A procedure can be run by 
other procedures, including itself. 

K. Conversational Mode:  The user can interact with a PROMULA program either in 
command mode or by responding to conversational prompts.  Conversational prompts are 
valuable when designing a program for use by others. 
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L. Debugging Mode:  The user can interrupt a program dialogue, perform local operations 
in command mode, and return to the same place where she/he left the program.  This is a 
very useful debugging feature. 

M. Multidimensional Data Structure:  Unlike the two-dimensional view of spread sheets, 
PROMULA supports a multidimensional data structure.  Data arrays in PROMULA can 
have ten dimensions, making it easy to define and consolidate highly structured 
information.  The information of a PROMULA program is structured into variables and 
sets.  Variables are multidimensional arrays whose subscripts are sets.  Variables store 
the information and sets classify information.  PROMULA variables can have up to ten 
dimensions and can be as large as the computer allows. 

N. Array or Matrix Equations:  PROMULA equations are written in standard algebraic 
notation.  The equation operands may be scalars, vectors or multidimensional arrays.  
Implicit and dummy subscripts allow a condensed notation for array equations. Simpler 
in notation, this feature is comparable to a similar capability of the APL language. 

O. Equation Solver:  PROMULA's equation solver gives solutions to systems of 
simultaneous equations.  

P. Variable Management System:  In PROMULA, a program is a database as well as 
computational procedures.  The database contains the input and output variables of the 
program as well as other supporting information.  The program database can be used 
independently of the program code, and the user can even interrupt a running program to 
work with its database. In addition to sequential access text files and direct access binary 
files, PROMULA supports a unique variable management system.  This is a 
multidimensional array management system that is ideal in managing the information 
usually stored in program variables.  Unlike other DBMS systems, which have limited 
command languages, PROMULA is a fully-featured applications programming language, 
so it offers full flexibility in analyzing and using information retrieved from its database. 

Q. Program Management System:  PROMULA has a program manager to help handle large, 
mainframe-size programs.  If the program code is too large, the program manager can 
divide the code into manageable segments. If variable arrays are too large or there are too 
many for the work space, they can be can stored on disk.  PROMULA's variable manager 
brings only what is needed into the computer's work space. 

R. Dynamic Simulation:  PROMULA supports dynamic simulation applications. It has all 
the special functions needed to develop system dynamics models—models of systems 
whose variables interact with each other continuously as they evolve over time. 

 

PROMULA was recently selected by the American Public Power Association as the host 
software for POWER MANAGER - a comprehensive library of management, planning, and 
engineering applications for public power systems. 


